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Summary of Research in the Period July, 1984 - June 30, 1985. Broadly
speaking, the research supported by the Air Force Office of Scientific Research during this ;t
period has centered about general matrix methods, and applications of matrix theory in ~
solving large systems of linear equations. ::
Listed below are those research papers, appearing in print in this period (July, 1984 - o
June, 1985) or pending publication, which were outgrowths of the research supported by
the Air Force Office of Scientific Research. (All carry, or will carry, an acknowledgement of N
AFOSR support.) ',:"
Ry
1. S. Ruscheweyh and R.S. Varga, “On the minimum moduli of normalized polynomials”, N
Rational Approximation and Interpolation, Proceedings, Tampa, Florida 1983, (P.R. -
Graves-Morris, E.B. Saff, and R.S. Varga, eds.), Lecture Notes in Mathematics 1105, .
pp. 150-159, Springer-Verlag, Heidelberg, 1984. MR86e:3007. ::\'
™~
. A.J. Carpenter, A. Ruttan, and R.S. Varga, “Extended numerical computations on g
the “1/9” conjecture in rational approximation theory”, Rational Approximation and N,
Interpolation, Proceedings, Tampa, Florida 1983, (P.R. Graves-Morris, E. B. Saff, and Y
R.S. Varga, eds.), Lecture Notes in Mathematics 1105, pp. 383-411, Springer-Verlag, x
Heidelberg, 1984. N
. A.S. Cavaretta, Jr., A. Sharma, and R.S. Varga, “A Theorem of J.L. Walsh”, revisited, ’.:
Pacific J. Math. 118 (1985), 313-322. MR86m:30039. ¥
. R.S. Varga and Wu Wen-Da, “On the rate of overconvergence of the generalized En- %
estrom-Kakeya functional for polynomials”, J. Comp. Math. 3 (1985), 275-288. MR87d: b
65034. S
£
. M. Eiermann, W. Niethammer, and R.S. Varga, “A study of semiiterative methods for o
nonsymmetric systems of linear equations, Numer. Math. 47 (1985), 505-533. @
. A.S. Cavaretta, Jr., A. Sharma, and R.S. Varga, “Converse results in the Walsh theory of :'.f_-
equiconvergence”, RAIRO Modél Math. Anal. Numér. 19 (1985), 601-609. MR87g:30001. Ng
The above research papers can be roughly grouped into the following areas: -
A. Applications of function theory, oo -~
B. The use of summability methods and approximate conformal :VSZEZ,',_D ,'\ :
mapping techniques in the study of iterative methods. ! For L
We now focus on area B, and the associated paper by M. Eiermann, W. Niet,hammer,[ 0 :
and R.S. Varga, listed as #5 above. 1 0 'a‘"

The Use of Summability Methods and Approximate Conformal Mapping Tech-ton—_____~¥4

niques in the Study of Iterative Methods.

(1)

To iteratively solve the matrix equation (in fixed point form)
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(where 1 is not an eigenvalue of T'), one takes as the basic iteration

(2) Xm+1 = T'Xm + € (zo = a,m >0),

which is well-known to be convergent, for arbitrary a, iff the spectral radius, denoted by
p(T), satisfies p(T') < 1. Associated with (2) is a semiiterative method (SIM), defined by

3) Yo =3 Tmi

=0

where the (complex) numbers {7 ;}izc.

B
t1=0,m=

o define an infinite triangular matrix

r To0
mo 71,1 O
T20 %21 722

(4) P=

where we assume

(5) }':": Tmi =1 (m >0).
=0
On setting
(6) Pm(z) =) T2’ (m 2 0),
=0

then pm(z) is a (complex) polynomial of degree at most m, with pn(1) =1 (m > 0).
If x denotes the unique solution of (1) (since 1 is not an eigenvalue of T'), then the error
vector €,, associated with the iterates x,, of (2), i.e., €m := X — X, satisfies

(7 Em =Tem-1=...=TMeo (m > 0).
Analogously, if £, := X — yum, then &, satisfies
(8) ém = pm(T)eo.

We now assume that the set of eigenvalues of T (denoted by o(T)) is contained in a
compact set ) (where 1 ¢ 2). The assumption of such a set §2 is typical in applications of
iterative methods applied to matrix equations arising from physical problems. Then, given
2, choose any infinite matrix P of (4), (which then defines the semiiterative method of (3)).
Then, the asymptotic convergence factor, with respect to P, is defined by

1/m
©) K@, P) = Ty {max lpm(z)1}
and we set
(10) K(Q) := inf {A' (2, P) : P induces a SIM of the form (3)}.
Then, K(€) is called the convergence factor for Q, and any P for which
(11) K(Q) = K(Q,P)




is called an asymptotically optimal SIM (an AOSIM) with respect to 2. The whole object i
to determine AOSIM’s for a given compact set Q2 (containing the eigenvalues of T°). for such
SIM’s give the fastest asymptotic convergence rates, and these are thus preferred for actual
computation!

To describe our main results, let C := CJ{oc} denote the extended plane, and let

' (12) M= {c C: Qis compact; 1 € C\; C\O is simply
" connected, and € contains more than one point}.

\ Then, by the Riemann Mapping Theorem, there is, for each € MM, a conformal mapping

13 V:C\{w:|w| <1} = C\Q, and
(13) ¥(oo) =00 : ¥(oo)=:9(NN) > 0.

Now, there is a unique @ with ¥(&) = 1, and if 9 := |&] > 1, then this number 5 is the key
to finding an AOSIM with respect to 2 € M.
More precisely, we have (cf. [5, Corollary [2]) the

Theorem. Given Q) € M, then any SIM generated by a P satisfying (5) 1s an AOSIM with

respect to 1 iff
1
(14) K(Q,P)=-.
n
Thus, for any 2 € M, an AOSIM always exists for 2, and such a SIM can be obtained
from the conformal mapping of (13). What is very interesting, in our opinion, is that there
is a strong connection with the theory of Faber polynomials and the construction of nearly
optimal semiiterative methods, for each € M. To be precise, let us normalize to 7(Q2) = 1
in (13), so that

(15) W(w):w-’»ioqw'k (jw] > 1).
k=0

If ¢(z) denotes the inverse mapping of ¥(w), then we can write the Laurent expansion of

(&(2))" as . ,
(16) (#(2))" = 702" + 3_Bnkz* + 3 Bak2.

k=0 k=-~o0
The principal part (or polynomial part) of (¢(z))" is defined to be the Faber polynomial of
degree n for the set Q. It turns out that, on assuming some additional smoothness on the
boundary 9 of , these Faber polynomials can be used to generate a SIM for the region (1
which is asymptotically optimal (i.e., an AOSIM). This is given in Theorem 22 of [5].
In our opinion, these results from complex function theory form the foundation of a wide-
reaching theory of iterative methods.
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